Moore's Law: Computer Comparison (20pts.)
 Comparing 2 Computers Over Time \& Seeing If Moore's Law Succeeded or Failed (Note: I made two comparisons ...students need only do 1 comparison.

John Harrington's First Computer Purchase

When: 1986, Junior Year in College (Changed from a manual typewriter to a personal computer with a dot matrix printer.)

Mac SE _ \$2600 (5pts.)

- Processor: 8 MHz 68000 processor,
- Hard Drive: None - 2 floppy discs.
- Display: 9" monochrome.

Mac 21.5" _ \$1099 (5pts.)

- Processor: 1.6 GHz dual-core Intel Core i5 processor
- Hard Drive: 1TB 5400-rpm hard drive;
- Display: 21.5 -inch (diagonal) LED-backlit.

Comparison (10pts.)

Question: Has Moore's Law taken place over the years in regards to this computer.
Moore's Law: A Computers Speed/Size/Capacity doubles every 2 years.
1987 to $2017=30$ years
30 divided by Moore's $2=$ A Factor of 15 . So $2^{15}=32,768$

Analysis:

Processor
 Conversion: 1Mhz = .001Ghz

- Convert Ghz to Mhz: $1.6 \mathrm{Ghz} \times 1000=1600 \mathrm{Mhz}$
- Moore's Law says $8 z M h z$ should grow by a multiple of $32,768=262,144 \mathrm{Mhz}$
- Conclusion: Today's Mac SE should be 262,144Mhz and it is only 1600Mhz. Thus Moore's Law supposedly failed...supposedly because I have asked several electrical engineers why there is such a tremendous disparity, and they state that it is most likely because I am trying to compare apples and oranges - the processors today are completely different than back in the 80s, so that you can't compare the speeds.

Hard Drive
 Conversion: $1 \mathrm{mb}=.001 \mathrm{~Gb}$
 $1 \mathrm{gb}=.001 \mathrm{~Tb}$

- Floppy Disk $=1.44 \mathrm{Mb}$. New Mac $=1 \mathrm{~Tb}$
- Convert Mb to Tb: $1.4 \mathrm{mb} \times 1000 \times 1000=.0000014 \mathrm{~Tb}$
- Moore's Law says .0000014 Tb should grow by a multiple of $32,768=0.0458752 \mathrm{~Tb}$
- Conclusion: Today's Mac SE should be 0.0458752 Tb. It is 1TB Thus Moore's Law succeeded.

